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Abstract. Biological organisms are the most familiar examples of self-replicat-
ing systems, and until the late 1940s, the only instances formally researched.
At that time, mathematicians and scientists began studying artificial self-
replicating systems when it became desirable to gain a deeper understanding
of how complex systems are able to form and evolve. Initial models consisted
of abstract logical machines, or automata, embedded in cellular spaces. The
large complexities seen in these early models agreed with the intuition that
self-replication was an inherently complex process. Later, it was learned that
much of the complexity was due to the imposition of artificial requirements.
This paper traces developments from complex, early models of self-replicating
systems in cellular spaces to recent, less complex models. As a survey of past
models, this paper provides an overview of numerous self-replicating systems
as well as some recent models that rely on emergent processes and artificial
evolution.

1. Introduction

The brilliant mathematician John von Neumann initiated the formal study of
artificial self-replicating systems in 1948, and before his untimely death in 1957,
he had produced the first logical design of a self-replicating automaton [31]. Over
the decades since this demonstration, theoretical and modeling studies have led to
progressively simpler and smaller structures [7, 3, 13, 23]. They have produced
structures that do problem solving while replicating [6, 20, 27], structures that
were produced automatically via artificial evolution [10, 16], as well as demon-
strated that self-replicating structures can emerge from a “sea” of non-replicating
components [5]. The focus of this paper is to describe these and other models
of artificial self-replication, limiting our attention to those embedded in cellular
spaces. First we look at look at why these models are worthy of investigation and
the historical trend away from complexity.
A better understanding of self-replicating systems could be useful in a number

of ways, for both theoretical and practical purposes. Von Neumann was interested
in understanding the build-up and evolution of extremely complex systems. Since
biological organisms were known to be of enormous complexity and had compli-
cated self-replication processes, he thought it natural to research self-replicating
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Figure 1. Plot of self-replicating system complexity for cellular
automata models. From left to right, the × symbols are von Neu-
mann [31], Codd [7], Vitányi [29], Perrier et al. [20], and the O
symbols are Langton [13], Byl [3], Reggia et al. [23], Lohn and
Reggia [17].

systems. He was especially interested in how a complex system could be con-
structed out of numerous simple parts. More recently, other reasons for studying
abstract models self-replication were posited. The field of artificial life was largely
borne out of studies of such models. Subsequent researchers in artificial life found
self-replicating structures to be a natural goal, especially for studying bottom-up,
synthetic biologies. On a more practical bent, research on self-replicating structures
could be useful in areas such as molecular-scale manufacturing [9], programming
massively parallel computers [22], and computer virus research [12]. Researchers
in molecular-scale manufacturing (also called nanotechnology), have discussed the
potential of self-replicating systems: “If assemblers are to process large quantities of
material atom-by-atom, many will be needed; this makes pursuit of self-replicating
systems a natural goal.” [9]. Having self-replicating computer programs that can be
acted upon by digital evolution [22] could allow easier programming of massively
parallel computers. Evolutionary bred self-replicating programs would breed on the
parallel computer and the programs that most satisfy a set of requirements would be
allowed to survive and replicate. Researchers have also investigated self-replicating
structures to aid in understanding biomolecular mechanisms of reproduction and
the origins of life [11].
Cellular space models of self-replicating systems have progressed from complex

models to less-complex models. This trend is apparent in Figure 1, where complex-
ity is plotted against time for cellular automata models. There are certainly other
measures of complexity one could chose, but we have defined it to be the product of
rule table size and structure size, plotted logarithmically. As can be seen, models
designed only for self-replication are lowest in complexity, with the least complex
of the others having three orders of magnitude more complexity.
The remainder of the paper is divided into three main sections. In section 2 we

present background material regarding cellular space models and self-replicating
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Figure 2. Common neighborhood patterns in 2-D cellular space models.

structures. In section 3 we present a series of brief case studies beginning with
the work of von Neumann and continuing through till present day. Included here
are models that are purely self-replicators, and those that provide additional func-
tionality in addition to self-replication. In section 4 we summarize the paper and
discuss potential research directions in the field.

2. Background

2.1. Cellular Space Models. A cellular space is a tessellation of cells con-
taining finite state automata that interact with each other. The key properties of
cellular space models are: strictly local interactions (resulting in emergent behav-
ior), rule based automata (usually deterministic), high parallelism, simple automata
(in general), and discretized space and time. Cellular automata (CA) models are
the most widely studied models and constitute the majority of cellular space mod-
els. There are also numerous variations of the standard cellular automata model
– for example: models that embed complex automata (e.g., a CPU with registers)
within the cellular space, and models that allow other events or operators to act
in addition to state transitions. These models are still cellular space models, yet it
would not be proper to call them cellular automata.

2.2. Cellular Automata. Von Neumann co-invented cellular automata with
Stanislaw Ulam as a medium in which to investigate and design complex sys-
tems such as self-replicating machines. Cellular automata are a class of spatially-
distributed dynamical system models in which many simple components interact to
produce potentially complex patterns of behavior [7, 32]. In a cellular automata
model, time is discrete, and space is divided into an N -dimensional lattice of cells,
each cell representing a finite state machine or automaton. All cells change state
simultaneously with each using the same function δ or rule table to determine its
next state as a function of its current state and the state of neighboring cells. This
set of adjacent cells is called a neighborhood, the size of which, n, is commonly
five or nine cells in 2-D models (see Figure 2). By convention, the center cell is
included in its own neighborhood. Each cell can be in one of k possible states, one
of which is designated the quiescent or inactive state. When a quiescent cell has an
entirely quiescent neighborhood, a widely accepted convention is that it will remain
quiescent at the next time step.
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CTRBL C′

00000 0
00001 1
00010 1
00011 0
00100 1
00101 0
00110 0
00111 1

CTRBL C′

01000 1
01001 0
01010 0
01011 1
01100 0
01101 1
01110 1
01111 0

CTRBL C′

10000 1
10001 0
10010 0
10011 1
10100 0
10101 1
10110 1
10111 0

CTRBL C′

11000 0
11001 1
11010 1
11011 0
11100 1
11101 0
11110 0
11111 1

Table 1. Example CA rule table for the parity function.

The CA rule table is a list of transition rules that specify the next state for every
possible neighborhood combination. In a 2-D, 5-neighbor model the individual
transition rules would be of the form CTRBL → C′, where CTRBL specifies the
states of the Center, Top, Right, Bottom, and Left positions of the neighborhood’s
present state, and C′ represents the next state of the center cell.
The underlying space of CA models is typically defined as being isotropic,

meaning that the absolute directions of north, south, east, and west are indis-
tinguishable. However, the rotational symmetry of cell states is frequently varied.
Strong rotational symmetry implies that all cell states are unoriented, meaning that
each neighbor to a cell has no distinguishable position. Weak rotational symmetry
implies that at least one cell state1 is directionally oriented, meaning that the cell
designates specific neighbors as being its top, right, bottom, and left neighbors. For
example, the cell state designated ↑ in von Neumann’s work is weakly-symmetric
and thus permutes to different cell states →, ↓, and ← under successive 90◦ rota-
tions. It represents one oriented component that can exist in four orientations. In
CAs that contain both weak and strong rotationally symmetric states, it is common
to represent the “strong” states using symbols that appear rotationally symmetric
(e.g., ◦, +, ×), and the “weak” states (components) using symbols that are not
rotationally symmetric (e.g., ↑, A, L).
As an example CA, consider the parity function where a cell’s next state is one

if there are an odd number of ones in the five cell neighborhood. The rule table for
this function is shown in Table 1, and the configurations at four points in time are
shown in Figure 3. It is interesting to note the complex patterns that arise from
a simple two state, five neighbor function. Such dynamics illustrate the emergent
behavior that is typical of many cellular automata simulations. Also note that CAs
are typically very sensitive to initial conditions. For example, even a slight change
to the t=0 state of the parity example will drastically change the dynamics.

2.3. Self-replicating structures. There is no universally accepted defini-
tion of a self-replicating structure, but we can qualitatively describe a generic self-
replicating structure as follows. The structure itself is typically represented as a
configuration of contiguous non-quiescent cells (see the five-component structure in
Figure 4). As the space iterates, the structures goes through a sequence of steps to

1The quiescent state is always a strongly rotation symmetric cell state and is generally in-
cluded in CA models with weak rotational symmetry.
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Figure 3. Configurations at t=0, t=1, t=2, and t=22 for the
parity function.

rules t=0 t=t’

initial
conditions

Figure 4. Illustration of self-replicating structure.

form a replicant. At some time t′, copy of the original structure appears isolated,
and possibly rotated.
The issue of triviality was circumvented in early models by requiring universal

computation and universal construction. Inspired by biological cells, more recent
models (those starting with [13]) have abandoned this requirement by insisting
that an identifiable instruction sequence be treated in a dual fashion: interpreted
as instructions (translation), and copied as raw data (transcription). As with un-
sheathed loops (i.e. loops lacking an outer covering of non-quiescent cells), one can
also consider the instruction sequence and the structure itself to be the same, and
thus the structure’s components directly influence its self-replication process.

2.4. Chronological Summary. A summary of some previous research in-
volving self-replicating structures in cellular space models is shown in Table 2. Most
models shown have been 2-D CAs with strong rotational symmetry. In models with
weak rotational symmetry, each rotated cell state is counted in the “states per cell”
column. The sizes of the self-replicating structures are measured in non-quiescent
cells, and are sometimes estimates since some systems were never implemented. The
listed models are primarily designs and implementations, though existence proofs
of self-replicating structures have appeared (e.g., [25]). The models shown include
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Year Model Type
Rot.
Sym-
metry

States
per
Cell

Neigh-
borhood
size(s)

Struc-
ture
size(s)

Func-
tion-
ality∗

Refs.

1951 CA weak 29 5 > 104 a [31, 21]

1965 CA strong 8 5 > 104 a [7]

1966 CT-mach. weak ≈ 10100 5 ≈ 102 a [1]

1973 CA strong 8 5 > 104 s [29]

1976 α-Univ. strong 5 var. ≈ 60 s [10]

1984 CA strong 8 5 86 s [13]

1989 CA strong 6 5 12 s [3]

1993 CA † 6,8 5,9 5–48 s [23]

1995 CA strong 10 9 52 a [27]

1995 EA weak 9,13 5 2,3 s [16]

1995 non-uni. CA strong 3 9 5 s [24]

1996 CA/W-mach. strong 63 5 127 a [20]

1997 CA weak 192 9 4,8,. . . a [5]

1997 CA weak 12 5 4,8 a [19]
∗ s=self-replication, a=capabilities in addition to self-replication.
† Both strong and weak rotational symmetries were investigated.

Table 2. Comparison of some self-replicating structures in cellu-
lar space models.

variations of cellular automata, and will be discussed in the next section. Briefly,
CT-machines are programmable finite automata with registers, α-Universes are
CAs augmented with chemistry-like operators, non-uniform CAs allow cells to have
differing rules, and W-machines are Turing machine models that are programmable
using high-level instructions.

3. Review of Models

The section presents a series of brief reviews of self-replicating structures in
cellular space models. Beginning with the pioneering work of von Neumann and
continuing to recent models, the trend toward less complex structures is evident.
Diagrams showing the space-time iteration of the cellular space are shown for most
of the models surveyed here.

3.1. Von Neumann’s Model. Among his other interests in the late 1940s,
John von Neumann wanted to gain a deeper understanding into the nature of com-
plex systems. He was keenly interested in how such such systems formed and
evolved from collections of numerous simple components [30, 31]. This interest
led him to investigate machines that could construct other machines, the so-called
universal constructors. Within the set of universal constructors are a special subset
of machines – the self-replicating machines. Partly from his interest in biological
organisms, he devoted much time and energy to the study of self-replicating ma-
chines. His seminal work in this area formed the cornerstone of what is known
today as artificial life – synthesis-based approaches to theoretical biologies.
The logical design of his self-replicating automaton consisted of a 29-state, 5-

neighbor, weakly rotation symmetric CA, consisting of many millions of cells. An
overview of this machine is seen in Figure 5, where the four main areas of the
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Figure 5. Overview of von Neumann’s self-replicating automaton
(adapted from [2]).

machine are identified: tape, tape control section, construction control section, and
constructing arm. The tape contained the description of the desired machine to
construct. The tape control area read and interpreted the tape as well as transferred
excitation signals. The construction control area extended and sent signals to the
construction arm.
After supplying a correctly-programmed tape to the machine, the sequence of

steps needed to have the machine self-replicate were as follows: i) reading and inter-
preting the input tape, ii) constructing new cells in the quiescent area, iii) “rewind-
ing” the tape, then copying it, iv) attaching tape copy to newly constructed portion,
v) signaling the newly constructed portion that construction had completed, and
vi) retracting the construction arm.

3.2. Codd’s Model. E. F. Codd introduced a simpler universal constructor
embedded in an 8-state, 5-neighbor, 2-D strongly rotation symmetric cellular au-
tomata, consisting of 100,000,000 cells [7]. A simplification to approximately 95,000
cells appeared later [8]. It shared behavioral similarities to von Neumann’s model,
but with reduced complexity. The design was influenced by neurophysiology of
animals, and one of the notable features was the inclusion of sheathed signal paths.

3.3. Vitányi’s Model. The model of Vitányi [29] was an example of a sexually-
reproducing cellular automaton. This model employed an 8-state, 5-neighbor cellu-
lar space and requires tens of thousands of cells for the two structures. It was argued
that in transitioning from asexual to sexual reproduction, a change was needed in
the number and structure of instruction tapes. The model specifiedM-type (male)
and F-type (female) automata, each containing two, nearly identical instruction
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########
#O+ OL OL#
# ###### #
#+# #O#
#O# #O#
# # #O#
#+# #O#
#O######O#####
# +O +O +OOOOO#
#############

Figure 6. Initial configuration of Langton’s self-replicating loop.
An identifiable instruction sequence ++++++LL is readily seen em-
bedded in the core of O states within the sheath.

tapes. Although the automata were quite complex, the model showed that sex-
ual reproduction of automata is possible, and that the recombination process was
somewhat similar to that of nature.

3.4. Langton’s Self-replicating Loop. The relatively recent resurgence in
modeling self-replicating structures is mainly due to studies conducted by Christo-
pher Langton. By recognizing that computation universality was not required to
obviate triviality, he was able to devise a vastly simpler self-replicating structure
in cellular automata [13]. Using concepts from Codd’s work, he derived an 8-state,
86-cell sheathed loop that requires 108 replication rules, orders of magnitude sim-
pler than previous models. The initial state of the loop is depicted in Figure 6, and
the first six time steps are shown in Figure 7. Figure 8 shows time step 151 where
the first replicant has appeared.

3.5. Byl’s Model. Byl made further refinements and derived a six state,
twelve cell self-replicating structure that required 57 replication rules and had a
single sheath [3]. Figure 9 shows the initial configuration of the loop. Figure 10
shows the first 24 time steps of the loop, and Figure 11 shows the first replicant
produced at time step 25.

3.6. Reggia’s Self-replicating Loops. Further simplification of self-replicat-
ing loops was found by deriving unsheathed loops, and varying symmetry condi-
tions [23]. This study verified that both strong and weak rotational symmetries
can yield simple self-replicating structures. The smallest structures found were a
6-state, 5-neighbor, 5-cell unsheathed loop under strong rotational symmetry, and
an 8-state, 5-neighbor, 6-cell unsheathed loop under weak rotational symmetry.
Figure 12 shows the first ten time steps for a structure with a six component un-
sheathed loop embedded in an 8-state, 5-neighbor CA space with weak rotational
symmetry. Figure 13 shows the colony that forms at time step 84.
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Figure 7. Time-steps 1 through 6 for Langton’s self-replicating
loop. The instruction sequence circulates counterclockwise on suc-
cessive steps.
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Figure 8. Time-step 151 shows the first replicant.

##
#LO#
#L+#
#*

Figure 9. Initial configuration of Byl’s self-replicating loop.

3.7. Tempesti’s Model. In [27] a 6-state, 9-neighbor, 52-cell self-replicating
structure is reported that is augmented with additional construction and compu-
tational capabilities. It is similar to Langton’s self-replicating loop, except in the
following ways. First, it has the ability to execute programs in offspring structures.
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Figure 10. Time steps 1 through 24 of Byl’s self-replicating loop.
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Figure 11. First replicant produced after 25 time steps.

Second, it uses a single interior sheath (instead of a double sheath), which is con-
structed prior to the signal being sent out. Third, instead of parent loops becoming
quiescent, they remain active and are capable of program execution. Fourth, the
construction arm extends in four directions simultaneously, as opposed to a single
direction. Figure 14 illustrates the structure of the loops at two points in time.

3.8. Arbib’s CT-machine. Arbib [1] noticed that the large degree of com-
plexity of von Neumann’s and Codd’s self-replicating automata could be greatly re-
duced if the fundamental components were more complex. He developed a model in
which automata are analogous to biological cells, as opposed to molecules. Thus, his
automata are very complex, and his description and proofs regarding self-replicating
functionality are much shorter than von Neumann’s and Codd’s.
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ture [23]. The number of replication rules for this structure is
58.
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Figure 13. The colony that forms later (time step 84) in the
development of the unsheathed loop structure from Figure 12.

His automata had approximately 10100 states and were capable of both univer-
sal computation and construction. The automata are embedded in a 2-D cellular
space model called Constructing Turing machines, or CT-machines [28]. Each
cell in this space (Figure 15) contains a finite-state automata that execute short
22-instruction programs (Figure 16). Instructions consist of actions such as weld
and move, and internal control constructs such as if/then and goto. Self-replication
occurs when individual CT-machines copy their instructions into empty cells. Com-
posite structures consisting of multiple CT-machines are able to move as one unit
since individual automata can be welded to each other. Each of the four compo-
nents is constructed out of identical automata, each programmed specifically for
the appropriate function W denotes weld positions, BR denotes bit register, module
is programmed using instructions such as weld, emit, move, goto. The machine
operates as follows. Since cells can be “welded”, a tape can be formed. The control
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Figure 14. Time steps 0 and 121 of Tempesti’s loop. State d
represents the data state.

control
head

program

computation tape

construction
area

Figure 15. Overview of embedded automata in the CT-Machine model.

head can read and write the computation tape in the same manner as a Turing
machine. The construction area is initially quiescent. Program cells can only write
into the construction area, and these write operations are equivalent to the placing
of new components.

3.9. Holland’s Model. In the mid 1970s, John Holland developed a theoret-
ical framework for the spontaneous emergence of a class of artificial self-replicating
systems [10]. Holland defines a set of model “universes” containing abstract coun-
terparts to rudimentary chemical and kinetic mechanisms such as bonding and
movement. He wanted to loosely model natural chemical processes (diffusion, ac-
tivation) acting on structures composed of elements (nucleotides, amino acids) to
show that even with random agitations, the tendency of such a system would not
be sustained randomness, but rather, life “in the sense of self-replicating systems
undergoing heritable adaptations.”
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Figure 16. Automaton in Arbib’s CT-Machine model.
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Figure 17. An example of a few cells from an α-Universe

The α-Universe cellular space model represents cell states as elements that are
logical abstractions of physical entities (e.g. atoms) and obey the conservation of
mass. Figure 17 shows an example of part of an α-Universe. Elements are the
fundamental units with codons encoding the elements as seen in the illustration.
Interactions among the elements are strictly local as in CA, but some are lo-

calized to aggregate structures (strings of bonded elements). Elements behave as
automata during the first of three “phases” of each discrete time-step. During the
second and third phases, they are acted upon by the four operators: bonding, move-
ment, copy, and decode. As an example, the “copy” operator becomes activated
if the sequence -0:e1e2 · · · el- forms (ei being one of the three elements), and it
would cause elements to be reshuffled so that a codon-encoded copy of the string
e1e2 · · · el would be assembled.
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0 0 → 0 1
1

Figure 18. Example transition rule.

1

11 11 11 11 11 11 11

111 1110 11100 11101 11101 11011 11 11

1 11 11 11

1 1

0

t=0 t=1 t=2 t=3 t=4 t=5 t=6

Figure 19. Self-replicating structure comprised of 5-cells that
uses 10 transition rules in a 2-state, 9-neighbor non-uniform CA
model.

Holland parameterizes important aspects of the α-Universes and then uses these
to derive formulas that predict the expected time required for emergence of a self-
replicating system. Substituting reasonable values into his derivations, a waiting
time of 1.4×1043 time-steps is computed (no emergence). Relaxing the requirement
from fully self-replicating to partially self-replicating, a waiting period of 4.4× 108

time-steps (4.4×108 seconds is about 14 years) is obtained. Since this is a reasonable
amount, it lends credence to spontaneous emergence of self-replicating structures
in general, given that Holland’s model and derivations are accurate. In [18], an
empirical investigation claims that some of the conjectures were flawed. Regardless
of whether the original analysis is valid, it remains one of the only studies of its kind
reported to date and raises important theoretical questions regarding emergence of
self-replicating structures.

3.10. Sipper’s Model. Sipper describes a self-replicating loop motivated by
Langton’s work [24]. The cellular space model is a modified cellular automata
whereby: the space iterates in discrete time with cells updated in a local, synchro-
nous manner, but unlike a CA, a given cell can change a neighboring cell’s state
(Figure 18 shows an example transition rule). Also, a cell can copy its rule into a
neighboring cell (non-uniform CA). Figure 19 shows the five component structure
in its self-replication process.

3.11. Perrier’s Self-replicating Loop. Perrier reports a 63-state, 5-neighbor,
127-cell self-replicating structure, exhibiting universal computation[20] (see Fig-
ure 20). Universal computation is achieved by using Turing machine model called
the W-Machine which is programmed using a small instruction set. Complexity is
reduced by eliminating requirement of construction universality. The loop struc-
ture self-replicates in the same manner as Langton’s self-replicating loop. Program
and data tapes are copied using transmitted signals. After a daughter structure is
produced, it can execute a W-Machine program.
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Figure 20. Perrier’s self-replicating loop. The structure consists
of three parts: loop, program, and data: D represents a data cell,
P represents a program cell, and A represents the position of the
program.

3.12. Emergent Self-Replicating Structures. Previous self-replicating struc-
tures have always been initialized with a pre-defined structure. Chou and Reggia [5]
investigates whether there exists a CA transition rule that can promote the emer-
gence of self-replicating structures from a randomly initialized CA space. Using a
new cellular automata programming language and development environment called
Trend, CA transition rules were found that: i) support replication of different-sized
structures, ii) show growth of small structures into larger ones, iii) allow interac-
tions between structures, and iv) are robust: independent of space size and initial
component density. Figure 21 shows some of the emergent self-replicating loops
that emerged.

3.13. Self-Replicating Loops: Problem Solving and Artificial Selec-
tion. Recent work on models that incorporate problem-solving capabilities into
self-replicating loops has yielded loops that can solve satisfiability (SAT) prob-
lems. Previous models incorporated a fixed “program” that is copied unchanged
to replicants. Chou and Reggia [6] demonstrate solutions to the SAT problem
in which replicants receive partial solutions that are modified during replication,
and artificial selection: promising solutions proliferate, failed solutions are lost.
The environment selects satisfied clauses by using “monitor” cells which destroy
unsatisfied loop fragments. Figure 22 depicts how the SAT problem predicate
Q = (¬x1 ∨ x3) ∧ (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ (x4 ∨ x4) ∧ (¬x4 ∨ ¬x5) ∧ (x5 ∨ ¬x6) is
solved using 4 by 4 self-replicating loops.

3.14. Automatic Discovery of Self-replicating Structures. The ques-
tion of automatically discovering self-replicating structures is examined in [16, 17].
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Figure 22. Self-replicating loops during SAT problem solving.
The initial 4 by 4 loop contains explored bits AAAAAA. The frame
at t=127 shows the population of “monitor” cells which function
to remove unsatisfied clause bits. New loops are generated and
tested by the monitor cells (not shown in last four frames). The
two solutions, 000100 and 111100 are found at t=394. Illustration
from [6].

In all such past models, the underlying transition rules have been manually de-
signed, a process that is very difficult and time-consuming, and is prone to sub-
jective biases of the implementor. This research introduced the use of genetic
algorithms to discover automata rules that govern emergent self-replicating pro-
cesses. Identification of effective performance measures (fitness functions) for self-
replicating structures was a key challenge in this problem. A genetic algorithm using
multiobjective fitness criteria was applied to automate rule discovery. The results
show that novel self-replication processes were uncovered by the genetic algorithm.
For example, some of our structures both rotate and move during self-replication,
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and some leave around unused components (debris) which promote the formation
of new structures. Such behaviors, which have not been used or considered in past
manually-designed self-replicating structures, are especially interesting, suggesting
that evolutionary computation can discover novel design concepts of general value.
Figure 23 shows an examples of an automatically discovered structure.
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Figure 23. Four-component self-replicating structure. The seed
structure moves towards the right on successive time steps and
produces two replicants: the first is seen at t=4 and then again
at t=7 along with the second replicant (upper right quadrant of
each respective frame). These replicants are rotated 90◦ counter-
clockwise and proceed upward. During the production of the first
replicant, debris forms (near coordinate system origin of t=3 and
t=4) and coalesces into two structures seen at t=5, lower left. One
structure moves downward and attempts to self-replicate but due
to crowding, is unable. The other moves to the left and produces
its first replicant at t=8 (lower left quadrant).

4. Discussion

Many of the models of self-replicating structures appearing in the literature
have been described in the preceding sections. From the early models to the present
day, the progressive simplification of self-replicating structures in cellular automata
is apparent. This was accomplished first by relaxing the requirements of construc-
tion and computation universality, and later by reduction of structure size. We’ve
seen how self-replicating structures have been constructed in cellular space mod-
els other than cellular automata, and how automatic discovery methods have been
employed with respect to searching for self-replicating structures.
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There are many directions for further research in this area. Investigating mini-
mal structure size in cellular automata structures, the effect of varied neighborhoods
(size and shape) and varied seed structures are logical extensions of some of the
previous work. Larger questions regarding the choice of cellular space models, for
example, stochastic automata, would appear worthwhile. In the realm of auto-
matic discovery, investigation of other search techniques would be of interest since
the fitness landscapes in these problems are poorly understood. Another area is
biochemical simulation: a few promising studies have appeared in which modified
cellular automata models are used to mimic biochemical interactions and simulate
template-directed oligonucleotide replication.
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